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ABSTRACT

This report documents a series of wind tunnel tests on a sample airfoil
designed to evaluate and quantify the "pumped spoiling" concept. The test
airfoil was a Sandia National Laboratories natural laminar flow section
designated SAND-1850. All tests were operated at a Reynolds Number of 1.5
million with a model having a 1-ft chord and a 9-ft span. The spoiling
perforations consisted of 1.6-mm diameter holes on 6.35-mm centers. The
pressure in the internal plenum that supplied the spoiling air to the
perforations was maintained at the tunnel dynamic head. Test results were
consistent and repeatable. Up to an angle of attack of 6°, there was
very little difference in the lift coefficient among the many test
arrangements studied. Past 8°, however, the 1lift coefficient trends
were very sensitive to the test configuration of the model. The report
includes the test results for 32 combinations of the spoiling arrangements
ranging from "clean" baseline airfoil to spoiling flow through all
perforations. In addition to the section coefficients, the report
presents model force data and section pressure profiles.
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1.0 INTRODUCTION

1.1 Pumped Spoiling

Power associated with wind energy is proportional to the wind
speed cubed. This power yields the characteristic wind energy
conversion power curve. Of key interest, from the control
perspective, 1is the high wind-speed zone of the power curve.
Provisions must be made for rotor speed regulation and in extreme
cases, when winds exceed a given maximum value, for rotor

shutdown.

When the energy conversion question is broadened to include the
economics of power generation, the situation becomes more
complex. On initial inspection, it may be deduced that the
rotor, generator, and support system should be designed to
extract energy up to the maximum local wind speeds. Closer
scrutiny, however, reveals that maximum wind velocities, although
representing significant energy levels, are available for only
short periods of time. Thus, a wind conversion system designed
for maximum wind speeds carries with it economic burdens of
higher capacity generators and support structures. Hence, an
economically competitive system must have the capability to shed

power past a certain rated value.

In the case of horizontal axis wind turbines (HAWTs), the
regulation, control, and eventual rotor shutdown often is
achieved via some form of blade-pitch change. This, in effect,

controls the aerodynamic power input into the turbine proper.

Unfortunately, this solution necessitates complex pitch-change
mechanisms and brings with it the associated problems of
maintenance and reliability. There are various efforts directed
at "spoiling" the flow on the blades of HAWTs by deployment of

aerodynamic spoilers. There is some evidence, however, that the



combination of a deployed spoiler and high blade angle of attack
"fools" the free-stream into thinking that aerodynamic surface is
a "thick" airfoil. This has the opposite effect to that desired.
The 1ift coefficient may increase.

The vertical axis wind turbine (VAWT) has its own unique
operating and control characteristics. Although auxiliary means
must be employed for startup, the rotor requires special
treatment for regulation at the upper speeds. Unfortunately, the
Darrieus VAWT does not 1lend itself readily to control by
blade-pitch-change mechanisms. Even if blade-pitch change were
possible, the blade angles would have to be controlled as a
function of the azimuth angle, a situation similar to the cyclic
control of helicopter rotors. Finally, the pitch-change
mechanisms and structure would have to carry the full-rated

torques of the turbine.

The problem of VAWT overspeed control is particularly onerous.
Fundamentally, there are two solution paths: mechanical rotor
braking and aerodynamic spoiling and braking. The first has been
applied on a number of commercial installations. Although this
concept leaves the aerodynamics of the turbine in its original
simplicity, it introduces a requirement for multiple redundancy

in the rotor-brake system.

The concept of spoilers has been developed to a high degree in
the aviation industry. Spoiling is a common 1lift-control
mechanism on high-performance sailplanes and in at least one case
is the sole source of roll control forces, completely replacing

the conventional ailerons.

The preceding techniques are specifically intended for rotor
overspeed control. It may be possible to achieve rotor power
regulation with partial spoiler deployment. The key benefit to
spoiling is that the energy is shed at the blade surface and not

at the hub, as is the case with braking.



A concept original to Sandia National Laboratories is a form of
aerodynamic spoiling that depends on the disruption of the blade
surface flow by a series of air jets supplied from the interior
of the blade. The rotor regulation is achieved via two different
but interdependent principles. The hollow passages of the rotor
blades serve as air-pumping channels. If the root of the blade
is opened, air will be pumped to the VAWT equator. There it will
exit through a series of |holes, disrupting the blade
aerodynamics. In the first instance, energy is required to pump
the blade air. This in itself will decrease power seen at the
turbine mast. The Jjets will in turn alter the blade pressure
distribution and decrease the aerodynamic power developed on the
blades. Preliminary calculations indicate that the spoiling
mechanism rather than the pumping will dominate in the power

regulation of the rotor.




l.2 Test Programs

The pumped spoiling concept was initially validated by Sandia
National Laboratories on the 5-meter research wind turbine.
Reductions in rated power of 15% were measured with all blade
ends open. No difference in performance when compared to the

baseline turbine was noted with ends closed.

A follow-on program was established at the University of
Washington and tests were performed on a sample l-foot chord x
9~foot span airfoil. The blade profile was a special natural
laminar flow section designated SAND-1850. The goal of the test
was to ascertain the effect the perforations or apertures have on
the lift and drag of the test article. To this end a series of
perforations was made at 30, 50, and 70% chord. The
perforations consisted of a series of holes 1.6 mm in diameter on
6.35-mm centers drilled full span on both top and bottom
sucrfaces. Air was supplied to the hollow interior of the blade
and 1lift and drag were measured with and without blowing
(spoiling). No perceptible evidence of an effect on the lift and
drag coefficients could be found with the perforations located at

the above chord stations.

This aspect of the performance was attributed to the type of
airfoil section under test. The SAND-1850 is a 50% chord laminar
flow airfoil and as such maintains a near zero pressure gradient
from just aft of the leading edge to approximately mid-chord.
Subsequently a row of spoiling perforations was drilled on the
top surface at 7.5% chord. The difference in lift coefficient
with and without spoiling (blowing) was dramatic. Figure 1
illustrates that the nominal maximum 1lift coefficient decreases
by approximately 10%. These early results largely confirmed that
the pumped spoiling perforations would have to be relatively near
the leading edge in order to effectively control the lift and

drag performance of the airfoil.
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The present report builds on the above mentioned previous work.
It is specifically designed to yield a firm data base to be used
in a centrifugally pumped spoiling vertical axis wind turbine
power—-control system. Obviously, as a result of the earlier
tests, the key focus of interest is the near leading edge of the
airfoil. The present series of tests was performed on the same
test airfoil used in the University of Washington tests, but
reconfigured to resolve earlier discrepancies associated with
instrumentation and "blowing" air ducting. The detailed
statement of work originated by the sponsor is contained in

Appendix A.l.



2.0 EXPERIMENTAL TEST PROGRAM

2.1 Test Item Modification

Sandia National Laboratories supplied the test airfoil and it was
reconfigured to satisfy the contract statement of work and to
better isoclate the airfoil from the air supply system. The
former involved redrilling a new set of perforations at 3.8% and
7.5% chord, installing surface pressure taps as specified in
Table I, and using instrumentation to measure internal pressure
in the front plenum of the model. The latter focused on
redesigning the air supply system in order to decouple the force
input as the supply ducting internal pressure changed. In
addition the model was refurbished, and new tip end plates were

designed, manufactured, and fitted.

The baseline model consists of two half sections split on the
symmetrical chord 1line (Figure 2). The test article was
assembled by bolting two of the extrusions to spacer blocks in
the front spar webs and directly through the trailing edge
skins. The bolt heads were then faired in with "Klax." To
insure safety and structural integrity the mounting points were
reinforced by Dbackup "demi" spars in the region of the
dynamometer attachment blocks. The perforations from the
previous tests at 30, 50, and 70% chord were sealed from the

inside by nylon tape.

2.2 Facilities and Installation

The test program was conducted in the 8 x 12 ft. subsonic wind
tunnel at the University of Washington (Figure 3). The test
section has centerline dimensions of 8 ft. high and 12 ft. wide.
The section has 18-in. fillets in each corner (Figure 4). The
model is normally mounted on the force dynamometer via a mounting

fork and a pitch change horn (Figure 5). Because of the airtight




TABLE I
[ e rear———

SURFACE PRESSURE TAP LOCATIONS

Station % Chord (Top & Bottom)

0 0 Leading Edge

1 2.5

2 3.8 First Row Perforations
3 5.0

4 7.5 Second Row Perforations
6 10

7 15

8 20

9 25

10 30

11 35

12 40

13 50

14 70

15 80

16 90 Not Operative
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12.

requirements of the front plenum in the model it was necessary to
support the model via a pair of mounting blocks, as shown in
Figures 6 and 7. The control horn was similarly attached to the
model.

In order to isolate the model from spurious force inputs due to
air supply ducting and pressure tap lines a pair of %-in. thick
end plates were mounted on the tunnel walls. The 2-ft2 end
plates were supported by vertical stantions and adjustable lead
screws. Thus the clearance between the wing tip plate and the
Plexiglas end plate could be held to approximately 1/8 in. In
addition the end plates provide a degree of two dimensionality in

the wing tip area.

The geometry of the model support arrangement resulted in model
motion range as depicted in Figure 8. The angle-of-attack range
of O to 24 degrees yields an area (shaded zone) on the section
profile that is fixed relative to the tunnel-mounted end plates.
It is through this common area that the blowing air is introduced
to the model on one tip, and pressure tap lines lead out at the
other. Figure 9 illustrates the air supply scheme. The air
supply line is hard wired to the fixed end plate. The air then
is transferred to the model across the model-end plate clearance
via a soft fabric flexible seal. The pressure tap lines are
conducted out the other end again via the common area (Figure
10). A shield is provided to minimize the drag of the pressure

tubing bundle where it is exposed to the free stream.



FIGURE 6: TEST AIRFOIL IN WIND TUNNEL

FIGURE 7: SUPPORT DETAIL
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FIGURE 9:

FIGURE 10:

DETAIL OF AIR INLET INTERFACE

DETAIL OF PRESSURE TAP INTERFACE
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16.

2.3 Instrumentation

The test model was instrumented to yield a comprehensive picture
of its performance. The contract statement of work called for
instrumentation provisions that would ultimately provide 1lift,

drag, and moment coefficients, and section pressure profiles.

- Lift, Drag, Moment:

The force data were obtained directly from the wind-tunnel
dynamometer. Their characteristics are itemized in Tables

II & III. The raw force data are tabulated in Appendix A.2.

- Pressure Profiles:

The section pressure profiles were obtained via a series of
pressure taps located as shown in Table I. The line of
pressure taps is located midway between the model centerline
and model tip (% span). The pressure data were acquired by
three Scanivalves, each with 32 ports (using three valves
shortened the pressure profile acquisition time to
approximately 30 seconds per angle-of-attack setting). In
addition a pressure port was provided 1in the model's
forwardmost plenum to record perforation blowing pressure.
The internal pressure port was located at the wing tip
farthest away from where the air supply was introduced. All
pressure readings were corrected to tunnel bell mouth

static.

-~ Blowing Flow Rates and Pressures:

The statement of work required that model plenum pressure
during blowing be maintained at dynamic head values. This
was achieved by maintaining a zero manometer displacement
between bell mouth static and model plenum. As the model
incremented through the angles of attack, the blowing flow
was adjusted to equalize pressures. An attempt was made to

measure the mass rate into the model by a pair of




Lift

Drag

Pitching Moment
Yawing Mbment
Rolling Moment

Side Force

TABLE 11

Read~-0Out Ranges and Sensitivity

Maximum Value
2500 lbs.

250 lbs.

5000 in-lbs.
5000 in-lbs.
5000 in-l1bs.

250 lbs.

Minimum Readable Value

1b.

in-lbs.

in-1bs.

in-lbs.

Tb.

17.
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Lift

Drag and
Side Load

Pitch,

Yaw

and Rolling

Moments

TABLE III

Balance Ranges & Sensitivity

Range

25
50
100
250
500
1000
2500

Tbs.
Ths.
Tbhs.
Tbs.
Tbs.
Tbs.
Tbs.

(Max. value)

2.
5.
10.

Tbhs.
1bs.
Tbhs.
25.0 lbs.
50. Tbhs.
100.0 lbs.
250.0 bs.

O 00O v

(Max. value)

50 in-lbs.

100 in-lbs.
250 in-lbs.

500 in~-lbs.
1000 din-~lbs.
2500 in-lbs.
5000 in-lbs.

(Max. value)

Min. Readable Value
.25
.50
.00
.50
.00
.00
.00

Tbs.
Tbs.
Ths.
Tbs.
Ths.
Ths.
Tbs.

o - OO

P -

.025
.050
.100
.250
.500
.00

.50

Tbs.
Tbs.
Tbhs.
Tbs.
Tbhs.
Tbs.
Tbs.

N -0 C 000

in-1hs.
in-1bs
in-lbs.
in-lbs.
10.0 din-lbs.
25.0 in~lbs.
50.0 in~1bs.

NN - O
o Gt O Oy

The 11ift drag and pitch balances have pan weights which may be
used to balance out a major portion of the load,
remainder to be measured on a more sensitive scale.

Lift

Drag

Pitch

Pan
Pan

Pan
Pan

Pan
Pan

to
to

to
to

to
to

625 Tbs. by 25 1b. dincrements
1250 Tbs. by 50 1b. increments
62.5 lbs. by 2.5 Ib. increments
125.0 lbs. by 5.0 increments.

1250 in-lbs.
2500 dn-lbs.

by 50 in-lbs.
by 100 in-Tlb.

thus allowing the

increments.
increments.



"rotometers" and then by an orifice flowmeter. However the
clearance gap between the wing tips and the fixed end plate
could not be completely sealed. Either the normal spanwvise
force resulted in problems with dynamometer grounding or the
wing-plate gap acted as an ejector. A compromise was
reached by installing a "soft" inflated gasket. This
arrangement effectively decoupled the model from the end
plates but it did allow some additional wunquantifiable

inflow into the model.

As a result the blowing mass rate is determined by using
flow conditions existing at the perforations. During tests
with blowing, the internal pressure in the model plenum is
known as well as the pressure profile on the outside
surface. This pressure difference together with the
perforation geometry yield the mass rate.

19.
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3.0 TEST PROCEDURE

3.1 Test Conditions

For all tests the Reynolds number was held at a nominal 1.5M.
This requirement dictated a tunnel q = 70 psf. The statement of
work specified model configurations that involved five test runs.
These are

(a) All perforations sealed (no blowing).

(b) First row open (top & bottom) (no blowing).

(c) First row open (top & bottom) (blowing).

(d) Second row open (top & bottom) (no blowing).

(e) Second row open (top & bottom (blowing).

The actual number of test runs was expanded toc a total of 32. 1In
addition to calibration runs, tests were conducted to assess the
sensitivity of the system to various configurational changes.
The test program concluded with a flow visualization run using
fluorescing dyes. The specific details of each configuration are
delineated in Table IV. Of these test runs 12, 15, 20, 22, and
31 are with perforation blowing. Runs 8 and 29 are the

"baseline" airfoil with no blowing and all perforations taped.

3.2 Test Sequence

The data acquisition followed a systematic procedure. The

sequence is as follows:

(a) A specific model configuration was established
(appropriate perforations were masked).

(b) The tunnel was brought up to the test Reynolds number
(given by q = 70 psf).

(c¢c) An angle of attack of -20 was set. (The tunnel
dynamometer did not allow the model to be pitched to 24°,
only 229 was possible).



Run

Run

Run

Run

Run
Run
Run
Run

7.

11.

12.
14.
15.
le.

. TABLE IV
e ro——]
R

TEST RUN DESCRIPTION

First and second rows open on top and bottom, no

blowing, inlet flange open.

First and second rows taped, no blowing, inlet flange
open.

First and second rows taped, no blowing, inlet flange
open, tip foam seals removed.

First row top open, no blowing.

First row top open, blowing (aborted seal failure).
Repeat 11.

Repeat 12.

Abort (data acquisition failure).

21.



22.

Run

Run

Run

Run

Run

Run

Run 24.

17.

18.

20.

21.

22.

23.

First row top and bottom open, no blowing, inlet flange
open.

-

First row top and bottom open, no blowing, inlet flange
closed (taped).

First row Eop and bottom open, blowing.

A

s

Second row top open, no blowing, inlet flange open.

Second row top open, blowing.

b

Second row top and bottom open, no blowing, inlet flange
open.

-

Second row top and bottom open, blowing.

A

)

—

4



Run 25.
Run 28.

Run 29.

Run 30.

Run 31.
Run 32.

23.

Same configuration as 7 (check runs).

Holes from previous 1985 tests are taped externally:.
first and second rows top and bottom are open, no
blowing (same as 7).

All holes are taped -'clean airfoil.

Same as 28 except first and second rows top are open, no
blowing inlet flange open.

First row top is open, blowing (check run to 12 and 15).
Flow visualization run at O, 4, 8, 12, 16 degrees (no
blowing).




24,

(d) If the test run involved perforation blowing, the air
supply was turned open until model internal pressure
equalled tunnel bell mouth static pressure.

(e) After <conditions were stabilized (approximately 30
seconds) the force and pressure data were recorded.

(£) The angle of attack was then incremented by 2° and the

cycle repeated.

A "typical" test run, including model configuration change,

required on the average 1% hours.

3.3 Data Reduction

At the end of each run the uncorrected coefficients were plotted
and evaluated as to reasonableness and trends. The raw force

data are tabulated in Appendix A.2.

After all the tests were completed the raw data were corrected
before final plotting and tabulations. A total of four
corrections were made to the raw force data:

- Balance interaction correction.

- Weight tare.

- Blockage correction of g as a result of wing and wake (no
blockage correction was applied due to stanchions and end
plates).

- Fork drag tare. (The supporting fork, pitch horn, and
mounting blocks were run alone and the drag of 6.07 1lbs

subtracted from total drag.)

The pressure profiles are corrected to the extent that the

pressure coefficient is referenced to a corrected q.



4.0 DISCUSSION

The following discussion is structured into three topics. The
first part deals with the mocdel performance with and without
blowing - the fundamental gquestion of this test. The second
section focuses on a unique phenomenon - crosstalk - which;,
although not unexpected, will nevertheless have to be considered
in the design of pump spoiling mechanisms. The third element of
this discussion is devoted to a description of a number of

observations and unique behaviors of the model.

A number of general points can be made for the overall test

program.

- In all tests the model was very well behaved up to
approximately 12©€. Past 149, apparently with the onset of
stall, the model began to exhibit roll and yaw oscillations.
They were irregular and increased in severity as the angle
of attack increased. However at no time were the motions so
severe as to cause the pressure tap bundle to contact the
end plates nor the air supply aperture to vent outside the

section profile.

~ In the planning for this test series and from the experience
with the 1985 tests it was realized that the drag
coefficient would require close scrutiny. The main source
of concern was the unknown drag of the supporting pitch fork
and the control horn and the effect of their presence on the
drag of the model. Typically uncorrected zero lift drag
coefficients were approximately .0275. It was intended to
obtain a "clean" model drag coefficient and then correct the
test runs appropriately. The model was to have been
suspended at the tips and instrumented for drag by
forceblocks in the end plates. The University of Washington
support forks would then be removed and the model tested at

0° angle of attack.

25.
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Although this approach was initially approved by the
University of Washington wind tunnel director, it was
subsequently determined that the scheme would not have a
sufficient safety margin and hence was not attempted. An
~alternate approach was used. 1In the last run (33) the model
was removed from the support forks and a drag value for the
forks and model mounting blocks was obtained alone at a
tunnel q of 70 psft. This drag was then subtracted from the
total system drag as a drag correction. Together with the
standard corrections for g and blockage effects, this brings
the corrected zero 1lift drag coefficient to approximately
.0175. Unfortunately the interference effect of the
mounting forks and support blocks on the drag of the model
still remains unknown. It appears reasonable to assume that
the difference between the corrected values of .0175 and an
expected value of approximately .009 is due to the

interference of the mounting system.

- The method of air conveyance to the model involved blowing
the supply air from a fixed end plate across a narrow gap to
the model wing tip. This arrangement tended to act like an
ejector and to an unknown degree may have impacted the
external flow field in the tip region. It was also observed
that the ejector action caused depressed pressures in the
immediately adjacent zone of the model plenum. This effect
could be minimized by increasing the model-to-end-plate
clearance gap. (The entrainment action takes place in the
clearance gap and not in the model plenum.) A clearance gap
balance was struck such that during blowing runs, no

perforations exhibited suction.

For the purposes of this discussion the most illustrative runs
were selected and plotted. The complete raw and reduced data are
found in Appendices 2 and 3. A typical range of results is
illustrated in Figures 11, 12, and 13. The maximum lift

coefficient of .94 occurs at approximately 12° for the case of a
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30.

clean or no blowing configuration. With blowing or with top and
bottom perforations uncovered the maximum lift coefficient is
approximately .75 and occurs at approximately 10°. This
represents a 1lift coefficient decrease of approximately 20%.
Various configurations discussed in the following sections fall

in between.

4.1 Blowing Effect

The comments on the blowing effect are divided into two
subsections: impact of first row perforations and impact of
second row perforations. The characteristic runs illustrating
first row operation are run 8 as a reference and run 14 for
perforations open, top only, but no blowing. Run 15 illustrates
the changes in the lift coefficient with blowing. These trends
are depicted in Figures 14, 15, and 16. Run 20 is for the model
configuration in which there is first row blowing at top and

bottom.

It is clear that the upper surface behavior controls the 1lift
coefficient. The model performance with the second row of
perforations involved is illustrated in Figures 17, 18, and 19.
Here again run 8 is used as a reference. With the top second row
open and no blowing (run 21) there appears to be an approximate
4% decrease in the maximum 1ift coefficient. With blowing (run
22) the maximum "spoiled" lift coefficient is .8. Interestingly,
this is higher than the .75 maximum lift coefficient for the
first row blowing case (run 15). If the second row top and
bottom are left open but there is no blowing {(run 23), then the
maximum lift coefficient falls between the clean airfoil (run 8)
and the blown "spoiled" case (run 23). With blowing, the maximum
lift coefficient decays to .8. For the second row the 1lift

coefficient control range is approximately 10%.
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It can be reasonably concluded that:

- The first row perforations are more effective in controlling

the maximum lift coefficient.

- The greater change in 1lift coefficient with and without

blowing is achieved with the first row perforations.

-~ The suction side perforations are dominant in controlling

the lift coefficient.

37.



38.

4.2 Crosstalk

In the earlier 1985 tests (Figure 1) the spoiling effect was
achieved only when the perforations were made at the 7.5% chord
location. The only tests made at the time were with perforations
on the suction side. The question remained as to the performance
of the model with perforations at the same chord station but on
both top and bottom surfaces. To resolve this test runs were
made to compare the effect of perforations open top only and open
at top and bottom. Figures 20, 21, and 22 are typical of the

results. Again run 8 is used as a reference.

With the first row perforations open only on the upper surface
(run 11) the performance is almost identical to that of the
reference clear airfoil (run 8). If the corresponding bottom row
of perforations is opened (runs 17 and 18) then the maximum lift
coefficient decreases by approximately 15%. It is evident that
when both rows (top and bottom) are open - even without blowing -
a form of crosstalk occurs. It appears that the bottom (positive
pressure side) perforations feed the model plenum, which in turn
feeds the suction side perforations and establishes a "passive"
spoiling. The same effect was evident with the second rows of

perforations at 7.5% chord but to a lesser degree.
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b2,

4.3 Exploratory Tests

Several test runs were made to explore the impact and
sensitivities of the model to the unique mounting and air supply
configuration. Figures 23, 24, and 25 illustrate the effect of
internal plenum sealing on the model performance. Run numbers 7
and 8 bracket the model performance. It was thought that with
the wing tip inlet flange being open (without blowing) enough air
would be admitted to the plenum to cause spoiling. Runs 17 and
18 compare the performance with the inlet flange open and taped,
respectively. There appears to be a minimal change in the 1lift

coefficient.

A purely inquisitive test run was made to evaluate a
configuration in which both rows of perforations are open on one
side only (suction side). The results are set in perspective in
Figures 26, 27, and 28. For this special configuration there is
a 1lift coefficient decrease of approximately 6%. It 1is
postulated that a quasi-spoiling occurs. The chord region, where
the two rows of perforations are located, is in a zone of very
steep pressure dradients. It appears that the second row of
perforations is at a higher pressure relative to the first row
and supplies spoiling air to the model plenum, which in turn

feeds the first row - ultimately to cause a degree of spoiling.

The last test run (32) was an attempt to visualize the flow
behavior on the model. To this end the model was coated with an
emulsion of fluorescing agent and water soluable carrier. The
model was operated at O, 4, 8, 12, and 16°, and photographs were
taken under a UV light. The results are depicted in Figure 29.
Interestingly the perforations from the 1985 tests (which were
taped on the inside) formed discreet supply wells for the dye.
It is evident that through an 8° angle of attack the flow is
relatively well behaved. At 12° evidence of reverse flow appears

and at 16° the model has pronounced reverse flow zones.
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APPENDIX A.1l:

CONTRACT STATEMENT OF WORK




2.

Statement of Work

The tasks described below are intended to result in
establishment of a firm data base to be used in the design of a
centrifugally pumped spoiling vertical axis wind turbine power
control system.

1.

SNL will provide a rectangular planform wind tunnel model
of the SAND 0018/50 airfoil section for use under the
contract. This model has a 305 mm chord and an aspect
ratio of 9. It was fabricated by joining two identical
half blade extrusions (Attachment A) along their common
x-axes. The model must be modified by the contractor in
the following ways:

a) 1.60 mm diameter x 6.35 mm perforations will be drilled
full span on both upper and lower surfaces of the
airfoil model at 11.5 mm and 23 mm chordwise locations
(measured from the leading edge).

b) Means will be provided for measuring midspan pressure
distributions on both sides of the model at a minimum
of 29 separate locations. These chordwise locations
(expressed in % of chord) are ¢ 0, 2.5, 5.0, 10.0,
15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 50.0, 70.0, 80.0,
and 95.0. Means for checking flow two dimensionality
(via pressure measurement) will be provided on upper
and lower surfaces at the 25.0 and 70.0% chord
locations at + one chord distances either side of
center span.

c) Means will be provided for pressurizing the forwardmost
cell of the model. The maximum pressure to be
maintained will be 75 psf.

d) Means will be provided to supply compressed air to the
model's forwardmost internal cell. It is estimated
that the volumetric flow rate capability of the
compressed air supply system need not exceed
3 ft3/sec. This supply system will provide the air
which is to be exhausted through the a) above
perforations.

The model will be statically wind tunnel tested to obtain
the following quantities:

a) Sectional lift, drag, and moment coefficients and
center of pressure locations.
b) Chordwise pressure distributions.

Measurements will be made for angles-of-attack between O
and 24° in 2° increments. Five different
configurations will be tested:



A.1.3/4

a) All perforations temporarily sealed, no blowing.

b) First perforation row open, second perforation row
temporarily sealed. no blowing.

c¢) First perforation row open, second perforation row
temporarily sealed. with blowing.

d) Second perforation row open, first perforation row
temporarily sealed, no blowing.

e) Second perforation row open, first perforation row
temporarily sealed, with blowing.

In all cases the test Reynolds number based on model chord
and tunnel speed will be 1.5 x 106. For cases with
blowing, the air guage pressure in the forwardmost cell of
the model must be maintained at a value within 5% of the
wind tunnel's freestream dynamic pressure. For these
cases, blowing air supply volumetric flow rates will also
be measured. The temporary sealing must be such that it
minimally affects aerodynamic performance of the model
airfoil section.

3. Test procedures will be prepared and submitted to SNL for
its approval prior to initiating the testing. The
procedures will include references to methods of
calibration of the test equipment.

4. A final report will be prepared and submitted. The report
will contain:

a) A detailed description of the experimental procedure.

b) A complete set of raw wind tunnel data.

c) A complete set of reduced wind tunnel data.

d) A discussion of the means by which the wind tunnel data
were reduced.

Period of Performance

Eight months from date of contract.
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